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Excitation of waves trapped by submerged slender 
structures, and nonlinear resonance 
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(Received 26 September 1986 and in revised form 2 December 1987) 

In  a companion paper the existence of trapped waves over submerged cylinders has 
been analysed, and a necessary condition for their excitation was derived. In  the 
present paper, this study is extended to obtain physically more important results. 
First we consider a more realistic geometry, namely a finite, although slender, 
cylinder. Second we derive the necessary and sufficient conditions for the excitation 
of trapped modes; and lastly, the induced resonant response is studied with the 
multiple-scales technique. It is shown then that the wave amplitude satisfies an 
equation similar to the resonant nonlinear oscillator. 

1. Introduction 
In an earlier paper (Aranha 1988, hereinafter referred to as I) the existence has 

been demonstrated of trapped modes over a submerged cylinder for an otherwise 
arbitrary body geometry and wave frequency. These modes are non-trivial solutions 
of the potential equation and homogeneous free-surface, bottom and body boundary 
conditions. Furthermore they have the form (see (2.5) in I ;  x = cylinder axis) 

In  the above expression and throughout this work, the deep-water condition has 
been assumed, and all variables have been non-dimensionalized by the cross-section 
beam R and acceleration due to gravity g. As shown in I, the trapped mode {KT; 
T(y ,  z ) }  can be determined by a standard eigenvalue problem, but since K ,  > K O ,  only 
nonlinear interactions between two harmonic waves can excite it. If w i , j  = 1,2 ,  are 
the frequencies of these waves and a j , j  = 1,2 ,  the angles they make with the 
longitudinal axis then a necessary condition for trapped-mode excitation is given by 
the relations 

n = w2-w1,  

K T ( Q )  = w i  cosa,-w; C O S ~ , ,  

since only then will the nonlinear interaction of the incoming waves have a 
longitudinal factor that can be matched with exp i(K,z-Qt) (see (1 .1 ) ) .  

In  the present work, results derived in I will be extended in several ways. First, a 
more realistic geometry - a finite, although slender, cylinder with length L = l /c ,  
e < 1 ~ will be considered here. Also, necessary and sufficient conditions for trapped- 
mode excitation will be established, and the induced resonant response will be 
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analyscd by multiplc scales, a standard technique for nonlinear oscillations (see 
Kevorkian & Cole 1985). As it might be expected, a cubic nonlinear wave equation 
is obtained, but some particular features deserve special attention. First, the 
nonlinear wave equation is non-dispersive, and so soliton-like behaviour should not 
be expected here. Second, the trapped mode leaks (to higher order) some energy to 
infinity, giving rise to a leading-order nonlinear radiation damping. Also, the 
expression for the detuning parameter has some peculiarities in itself, that  have both 
practical and theoretical consequences. Finally, the body slenderness introduces a 
second slow lengthscale, X ,  = ex, beside the one naturally introduced by the 
nonlinearity. It is certainly of some interest to know how this second lengthscale 
interferes with the whole problem. 

following coefficients can be found : 
Once the trapped mode { K T ;  T ( y , z ) }  at the 

m 

l0(52) = 52 T 2 ( y ,  0) dy ; I,(O) = K ,  s, 
00 m 

f,(Q) = 1 7'*(y,O)dy; 1,(52) = 1 

frequency 52 is determined, the 

In (1.3), A ,  is the entire fluid region in the cross-section plane (y,z) and aR is the 
contour line of the submerged cylinder. As it will become clear in this work, the 
coefficients (1.3) will be needed to determine the nonlinear response. In  particular, if 
c(52) is the trapped wave 'group velocity' in the longitudinal x-direction, then, from 
(4.2) in I and (1.3) above, it follows that 

2. Trapped-mode excitation 
In this section the excitation of trapped modes, due to  the non-linear interaction 

between two waves with amplitudes Ai,  frequencies wi and angles of incidence ai, 
j = 1 ,2 ,  will be studied. Some preliminary definitions will be introduced first. Thus, 
let 

where S is the small wave-amplitude parameter. Since R is the lengthscale and 
(By); the related velocity scale, the non-dimensional potential 0 is defined by 

6 - O(S) ,  
1 

@=- 
R( Bg); 

where a tilde denotes a dimensional variable. If an asterisk stands for the complex 
conjugate, then, from (2.1), ( 2 . 2 ) ,  the incident wave is given by 

(2.3) 
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The linear diffraction potential a t  the frequency wi can then be written as 

q x ,  y, z ,  t )  = #.( , z ;  ex, mi) e"":5COS"j-"jt' + (*),I 
#j(y, z ;  ex ; ail = $ , ~ y ,  2 ;  aj) + + s , i ( ~ ,  z ;  ex; ail, J 

where #,,j(y, z ;  ex; ai) is the related scattered wave. Since the fast-changing factor 
exp (i wj" x cos 01,) has been factored out, the scattered wave q5s,j changes slowly with 
x for a slender body. Or, more precisely, its longitudinal derivative is of relative order 
e where e is the small slenderness parameter. This fact is recognized here by writing 
#i and #s,i as functions of the slow variable ex (see (2.4)). 

If the two harmonic waves are acting together the linear response is given by 
6.QL(x, y, z,  t ) ,  where 

(2.4) I Y  

2 

aL(x,  y, z ,  t )  = c [$aj $j(y, z ;  ex; mi) ei(wj2zcosaj-wjt) + (*)I. (2.5) 
j=1 

6. QL(x, y, z ,  t )  is the leading-order solution of the nonlinear problem 

(2.6a) 

(2 .6b )  

V @ . n  = 0, ( 2 . 6 ~ )  

Radiation condition. 

(2 .6d )  

(2 .6e)  

The symbol . . . stands for higher-order terms, and later it will be used also to indicate 
terms that, although not of a higher order, are unimportant for trapped-mode 
excitation. Owing to the nonlinear character of the problem, the proper radiation 
condition will be discussed in the next section. At order 8, however, it must be given 
by the incident wave (2.4) and the classical linear radiation condition for the 
scattered potentials q&. To simplify the exposition the body will be assumed fixed in 
space and so the relevant boundary condition is ( 2 . 6 ~ ) .  I n  this circumstance the free 
surface is the only source of non-linearities, represented here by the quadratic and 
cubic operators shown in (2.66). If 

. a  a a 
ax ay aZ' V = z -+j -+k-  

these operators can be written as 
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see Newman (1978) for details. If {oj; aj;j = 1,2} satisfy (1.2) it is an easy task to 
check that 

&[6.@,; S.@,] = P [ q ( y ;  EX) ei(KTs-Rt)+(*)]+..., (2.9) 

where . . . now indicates unimportant terms, and 

with 

r = 2 4  w i  Q(1-  cosa1 cos a,) - ui w1 sin2 a2 + w2 w;' sin2 a,. (2.10b) 

In deriving (2.10). the potentials # j  were considered independent of x since, owing 
to body slenderness, a#j/ax - O ( E )  and terms of order sS2 were neglected when 
compared with P. The second-order potential Qj, can be written as 

(2.11) @,(x, y, z ,  t )  = s~[$,,(x, y, z ,  t )  ei(KT5--SZt) + (*)I + . . . , 
where #21(x, y, z ,  t )  is the solution of the problem (see (2 .6) )  

(2.12a) 

(2.12 b )  

(2 .124 

subject also to boundary conditions a t  infinity and initial conditions. If A ,  is the 
fluid region in the plane (y,z) and Y(y,z) an arbitrary exponentially decaying 
function as Iyl- 03, then multiplying ( 2 . 1 2 ~ )  by !P(y,z) and integrating by parts in 

A, ,  one obtains 

where 

M m ( 5 h 1 ;  Y )  = [,, [ V $ 2 1 * v ~ + + $ # z l  Yl -q, #Z1(Y> 0) V Y ,  0) dY. 

(2.14) 

Since q(y ; EX) changes slowly with x then, with an error O(t.), one may try a solution 
$21 of (2.13) independent of x and t. I n  this case the terms within square brackets in 
(2.13) are zero, and taking Y = T one obtains 

Ma(#zi; T) Io(Q) QL(ex), (2.15) 
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where I,,(Q) is defined in (1.3) and QL(ex) is given by 

(2.16) 

Since { K T ;  T(y,z)} is a trapped mode a t  frequency 0, then M,(T;  4 )  = 0 for an 
arbitrary 4 ;  see I for details. Then either QL =_ 0, in which case the excitation is 
orthogonal to the trapped mode, or (2.15) leads to a contradiction, synonymous with 
resonance. The necessary and sufficient conditions for trapped-mode excitation are 
then: (i) condition (1.2) is satisfied; (ii) QL + 0. Since this latter condition is usually 
satisfied, resonance is expected if the tuning conditions (1.2) are fulfilled. 

The ensuing nonlinear resonant response will be analysed in the next section, but 
some insight can be gained by looking a t  the linear solution of (2.12). To avoid the 
contradictory result (2.15), one should look now for a particular solution &, a 
function of x and t .  In  this way let 

(2.17) 

with c ( 0 )  defined in (1.4). Placing (2.17) into (2.13) one obtains the identity 

+ 0 J:m T(y, 0) Wy, 0) dy] + J:' q(y ; €4 Wy, 0) dy. (2.18) 

If Y(y,z) is taken equal to T ( y , z ) ,  the left-hand side of (2.18) is zero again but the 
right-hand side is also now zero (see (1.3), (1.4) and (2.16)). So a particular solution 
of (2.12) exists of the form (2.17), and the complete solution can be obtained by 
adding a homogeneous one and imposing the relevant boundary and initial 
conditions. t 

For large (2 ;  t )  the solution (2.17) is dominated by the first contribution 

(2.19) 

The above behaviour is typical for a linear resonant phenomenon. For a harmonic 
oscillator the linear resonant response increases linearly in time, whereas in the 
present case i t  increases linearly with time and longitudinal coordinate. 

Some important conclusions can be derived from (2.19). First, (2.11) and (2.19) 
indicate that the potential @ is a function of the slow time and length a2t,S2x, 
respectively, where 6 is the small wave-amplitude parameter. At resonance the actual 
order of magnitude of the response should be larger than 6 ~ of order #, p < 1, for 
example - and so @ should be a function of the slow length and time scales 
(X; T) = (&a)' ( g ;  t ) .  For ( X ;  T) - O(1) the resonant response is of order Sip and it is 
dominated by the term 6 2 A ( x , t ) T ( y , z ) ,  of order P ( x ;  t )  = 62-2p(X; T ) ;  see (2.11), 

t Recall tha t  (2.17) is correct with an error O(e)  since QL(sx) changes slowly with x. In reality, 
if the  body axis is on the segment 0 < x < l/s, then QL(sx) = 0 for x < 0 and 5 > l/s and so (2.17) 
is bounded in the limits x + f CO. 
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(2.19). Since (X; T )  - O( l), the equality Sfl = s’L-2fl must hold, leading to /3 = 3. In this 
case, 

X =&x, T =&t ,  (2.20 a )  

and, to leading order, the potential is given by 

~ ( x ,  y, z ,  t )  - $+A(x, T ) T ( ~ ,  z )  e1(KTz--S2t)+ (*I. (2.20 b )  

The amplitude function A ( X ,  T )  should be determined to avoid a secular term (2.19) 
at  order S2 and, from (2 .20b) ,  a cubic nonlinear wave equation for A ( X ,  T )  should be 
obtained. The arguments presented here are standard in nonlinear oscillation theory ; 
see Kevorkian & Cole (1985) for details, and Aranha, Yue & Mei (1982) in the context 
of free-surface problems. In  the next section the wave equation for A ( X , T )  will be 
derived. 

3. Nonlinear resonant response 
In $5 1 and 2 of the present work, the incoming incident waves werc supposed to 

tune exactly to the trapped mode {K,(Q) ; T ( y ,  x ;  Q)}; see (1.2). In  reality a near- 
resonant condition must be considcred and so, instead of (1.2), the following relations 
will be assumed hereafter : 

- - 
Q = w2-w1, K ,  = W ;  C O S C L ~ - W :  COSCL,, (3.1 a )  

with {a; KT} close, in some sense, to {Q; KT}. Consistent with (2 .20a) ,  one may 
write 

= Q+&AQ, KT = K,+$AX,, (3.1 6) 

where (AQ; M,) - O(1) defines the near-resonant region, This means that the 
‘width’ of the resonant peak is of order & although the actual size of this region is 
affected by a numerical factor that can be small or large, depending on the geometry 
of the submerged body. Since this is an important point for pradca l  application, it 
will be analysed later. Prom (2.5) and (2.20) thc potential O(x ,  y, z ,  t )  can be written 
as 

@(x,y,z , t )  = $ { + A ( X , T ) T ( y , z )  e i (KT”-” t )+ (* ) }+S .OPL(x ,y ,x , t )  

+ &iA2(X, T )  ~,,(y, z )  ezi(KTsp * t ’+ (* )}+~ON(x ,y , z , t )  ~ 

+ ~{#,,(y, x ;  ex) ei(lfTz-Qt) + (*)} + . . . + o(&. (3.2) 

The two first terms in (3.2) are, respectively, the leading-order term (2 .20b)  and the 
linear solution ( 2 . 5 ) .  The last one, of order S2, is just the potential forced by p(y; ex), 
see (2.12); and .,. indicates terms of order S2 associated with the sum frequency 
w1 + w ,  of the incoming waves. They are not relevant for the present analysis and the 
two remaining terms in ( 3 . 2 )  will be explained next. First, however, it is worth 
pointing out the following : since our interest is restricted to the resonant order S2, the 
function A ( X , T )  can bc considered a constant when the quadratic and cubic 
operators are applied to it. The discrepancy will appear a t  order $ < S2 and, for the 
same reason, {K,; a} can be considered equal to { K T ;  Q} in similar expressions. 

The quadratic operator applied to the leading-order term gives rise to two 
contributions a t  order 4: one with the form :jA12b,,(~) and the other given by 

L+iA2(X, T )  b,,(y) ezi(K~z-8t) +(* ) I .  
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It is an easy task t,o check that 6,,(y) = 0, and 

The wavenumber A, in (3.3) is defined in ( 1 . 1 )  and the potential R,,(y,z)  in ( 3 . 2 )  is 
excited by b,,(y) a t  the free surface. The term $ON in (3 .2 )  comes from the quadratic 
interaction between the leading-order term and the linear solution 6.@, and only its 
quadratic interaction with 6*@,, of order 8 < J2, will contain the excitation factor 
exp i(K,x-Qt). It follows that &QN is of no relevance for the present ana1ysis.t The 
quadratic and cubic operators applied to (3 .2 )  give 

&[@; @]+C[@; @; @] = &{aiA2(X,T)bzz(y)  ezi(r7Tz-'i)+( *)> 

+ P { [ - - q ( y ;  E~)+(~,(~)+~,(~))JA(x,T)('A(x,T)~ e'("T"")+(*))+. . . . (3.4) 

The functions {q(y,  ex) ; 6,,(y)} are defined in (2.10), (3.3); and {n,(y) : n,(y)} come, 
respectively, from the quadratic interaction b tween the leading-order term and the 
potential B,,(y, z )  and from the cubic interaction of the leading-order term. They arc 
expressed as 

I 
6QhiT(y,  0) B,,(y, 0) -2Q35"(2/, 0) b 2 2 ( ~ )  

( 3 . 5 U )  

and 

-(3K$(K$-~Q4)-Qs)T3(y,0)+(16Q4+3K~) 
16 

Placing ( 3 . 2 )  and (3.4) into (2.6), and separating terms of like orders in 6, one 
obtains 

( a )  order 4: 
V2B,, - (2KT)'BZ2 = 0, 

- a 4 2  (Y, 0) = (2Q)2&(Y, 0) +b,,(Y)~ 

( 3 . 6 ~ )  

(3.66) 

VB,,.nl,, = 0, ( 3 . 6 ~ )  

%(y, - h )  = 0, (3 .6d)  

az 

az 
where B22( y, z )  satisfies the radiation condition 

B,,(y, z )  - B& eiDo(")'I"lfo(z; 2 0 ) ,  y -+ 00. (3.6e) 

It shows, however. that a second slow scale (Xl;Tl) = $ ( X .  5") should appear at higher order. 
The present analysis is valid then for (X ; T) < O(S-2). 
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The function f o ( z ;  252)t is defined in (3.2) of 1, with 252 in place of 4 (notice that 
df0(0; 252)/dz = (252),f(0; 2Q)), and a full explanation of the above condition will be 
given after the order-# equations are written. 

(b )  order 62: 
V2$21-K$$21 = - iK,---AK,R,A T ( ~ , z ) ,  (3.7a) I [ ;; 

[ E  1 ~ ( ( ~ > o ) - Q * $ 2 1 ( y , O )  = iQ-++QQA T(y ,O)+ (nz(y)+n,(y)) lA12A--q(y; ex), w 2 1  

az 

V4,,. n I c B  = 0, 

ax  

(3.7 b )  

(3.7c) 

( 3 . 7 4  a h 1  -@, -h)  = 0, 

q521 bounded at infinity. ( 3 . 7 e )  

Condition (3.7e) is sufficient for the present analysis, as will be seen later. In the 
following, the structure of (3.6) will be briefly analysed. 

It should first be observed that, from the inequality 2KT(52)/K,(252) < 1 (see (4.3) 
in I), the trapped mode a t  frequency 252 is not excited in (3.6).  So this set of equations 
is well behaved, and since b,,(y) + 0 when y --f 00, the behaviour of B,,(y, z )  at  infinity 
is given by (3.6e), with 

Do(Q) = 4K0 1-- - , [ 
where { K T ;  KO}  are defined in (1 .1) .  It should be observed that D(Q) is real if 
K , / K o  < 2 -a  condition usually satisfied by trapped modes -and in this circumstance 
B,,(y,z) radiates energy to infinity. Since this potential is solely related to the 
trapped mode, then (3.6e) indicates that  this mode actually leaks energy to infinity 
a t  higher order, when K,/Ko < 2. The radiated power P, can be obtained from (3.6e) 
if the pressure is multiplied by the horizontal velocity and then integrated along the 
depth. It is given by 

(3.9) I 00 

P, = [ ~ m  S_, ~,,(y, 0) b , , ~  dy 8 1 4 4 ,  

where the relation between the excitation term b,,(y) and the far-field amplitude 
B& has been obtained from the energy integral of (3.6).  If K, /Ko  > 2 then iD,(Q) < 0 
and B2,(y, z )  is exponentially decaying as ly( + 03. In this case Im B,,(y, 0) 3 0 and 
the radiated power is obviously zero. More will be said about the influence of 
B,,(y, z )  later. 

The analysis of (3.7) is relatively simple a t  this point. If the field equation is 
multiplied by T ( y , z )  and integrated by parts in A,: the following identity is 
obtained : 

"1 Jf,(#,l>T) = i (J , (Q)*+rme + ( I o ( Q ) A Q - ~ , ( Q ) w - ) A  
aA 

t To make the analysis morf: general, arbitrary water depth has been assumed here. For infinite 
water depth, f,,(z; 2 8 )  = (8K,)z erK@; KO = Q2. 
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The parameters Io(Q),  etc., have been defined in (1 .3) ,  the bilinear form M E ( . ; . )  in 
(2.14), and QL(ex) in (2.16). SinceM,($,,; T )  = 0, from (3.10) the following equation 
can be derived for A ( X ,  T )  : 

In  (3.11) the wave velocity c is defined in (1.4) and the detuniny parameter is given 
by 

F = A Q - c U , .  (3.12) 

The parameter pv is the viscous damping coefficient and an expression for it will be 
derived in the next section. The coefficient n + ip, is defined by the expression 

(3.13) 

where, using (3.5), one obtains 

(3.14b) 

Notice that the influence of B,,(y, z ) t  appears only in the form 

s_z B,,(Y, 0) b,&) dy 

and this quantity can be determined by means of a variational approximation, in a 
manner similar to the one indicated in Aranha & Pesce (1988). In this context the 
actual computation of the influence ofB,,(y, z )  is not difficult from a numerical point 
of view ; see Appendix for details. 

The parameter y in (3.11) is the ratio between two slow length scales: onc, ex, 
associated with the body slenderness, and the other $x, associated with the nonlinear 
resonance. It is important, however, to keep in mind the following point: the 
numerical value of y can be large or small but, from a theoretical point of view, it 
must remain constant as (e ;  8) + 0. The theory presented here can deal, then, with the 
longitudinal variation of the linear scattered potential $Jy, z ;  ex) but arguments to 
be given next show that this dependence is, in general, of higher order and can be 
disregarded. Indeed for long waves (05 L - O ( 1 ) ;  w5 - O(e)) the scattered potential is 
of relative order 6 ,  and can be ignored consistently. For short waves (wj" B - O( 1) ; 
wj" - O(1)) and sin o ~ j  - O(l) ,  the scattered potential can be represented by a strip- 
theory approximation, with a relative error of order e. As is well known, the strip- 

t The terms proportional to B,,(y, z )  in (3 .5a )  can be integrated by parts in (3.13) and the above 
expressions are then obt,airled with the help of (3.3). From the energy integral of (3.6) it can be seen 
that p r  2 0. 

15 FLM 192 
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theory approximation for the scattered wave is independent of x for a body with 
uniform cross-section, and so the x-dependence of QL is again of higher order. The 
only case where the x-dependence is of relevance is when one of the incident waves 
is in the hcad-sea direction and the associate wavelength is short. For a 
semisubmersible platform, however, the x-dependence can be ignored even in this 
case to a first approximation, since these structures are relatively transparent to the 
action of sea waves and the effect of the scattered potential is small. In  all these cases 
one can take consistently 

QL(cx) = QL[l + O(E)], Q, = constant, (3.15) 

which certainly simplifies some aspects of the analysis. Besides the exciting term 
QL and 'group velocity' c(52), the wave equation (3.11) depends on four parameters: 
the damping factors {pv; p,.), the nonlinear restoring coefficient n and the detuning LT. 

The physical meaning of the damping factors will be explained in the next section, 
but i t  is important to observe here a particular feature of the detuning parameter IT. 
In fact, as is clear from (3.12), IT can be zero even for non-zero values of (An; 
AKT} - it suffices that A52/AKT = c(Q). This result means only that the exciting 
waves are then tuned to the trapped mode {K,(B + A Q 8 )  ; T ( y ,  x ; 52 + A52&)), since 
c(Q) = dB/dKT = ASZ/AK, in the limit 6-0. Notice that the discrepancy between 
T(y, z ;  52) and T(y, z ;  52+A52$) is of order $ and so (3.11) can be consistently used 
to analyse the trapped mode at frequency SZ + A528. 

4. Energy equation and viscous damping 
To obtain a clear physical meaning for the damping factors {pv;,ur} and, 

simultaneously, to check the consistency of the wave equation (3.1 l ) ,  it is worthwhile 
looking for the energy equation associated with the trapped-mode excitation. 

It is convenient first to obtain the energy equation directly from physical 
arguments. In this way the average kinetic energy in one cycle is given by 

Ec = O.bPR"yJJAa ( V @ ) 2 d A m ,  

where a tilde is used for dimensional variables and ( * >  is the average operator. 
From (1.3) and (3.2), however 

l /(V@)2dAm = 0.5&41252n1,(Q), 

to leading order. In  spite of nonlinearity the potential energy is, to this order. equal 
to the kinetic energyi, and then 

(4.1) 
The trapped wave is excited by a pressure in the free surface caused by the nonlinear 
interaction of the incoming waves. In  dimensional variables, 

E = pgB38QIo(52) ; IA(X, T)12. 

t To leading order the potential @ follows the trapped wave that,, being self-sustained 
oscillation, must have the potential energy balanced by kinetic energy (see (2.14) with  Y = T). 



Excitation qf waves trapped by submergpd slender structures 445 

where this last expression comes from (2.9).  The average power induced by this 
pressure is given by 

Using (2 .2) ,  (2.16), (3.2) and (4.2),  one obtains 

From (3.9) and (3.14b) the trapped-wave radiated power is given by 

(4.4) 

The power dissipated by viscosity will now be estimatcd. Since $4 1.  there is no 
flow separation and in the periodic boundary layer, the convective part of the fluid 
acceleration can be disregarded in relation to aliilat". Thus, if o, (s )  cosdt" is the 
potential flow outside the layer, then the velocity profile is given by (see Schlichting 
1968, p. 411) 

SO(s",?1",f) = ~,(s")[cosdt"-cxp (-11/1/2)cos(dt"-y/1/2)] (4 .5a)  

y = (d/V)&j, (4.5h) 

where u is the kinematic viscosity and P = (v/d)i, the order of the boundary-layer 
thickness. The power dissipated in the boundary layer BL is then 

Using (3.2) and (4 .5a) ,  the last integral in ( 4 . 5 ~ )  can be expressed as 

wherc U:(s) = 0.5$ JA(X, T)I2 [ ( ~ ~ T / ~ S ) ~ + K $ T ~ ( S ) ] .  Since d = Q(g /B) i  then, with the 
help of (1.3), the following expression is obtained for pv : 

The above formula for the viscous damping coefficient ,uv is only of academic interest 
if the body has a sharp corner, since then flow separation is unavoidable. Evcn in this 
case, however, the effect of viscosity may perhaps be simulated by the term i , q  in 
(3.11), with a proper choice for ,uV. 

The trapped-wave group velocity is e = dQ/U,  and since these waves propagatc 
in the z-direction, energy conservation implies 

I - -  

(:+c$)& = P, - P, - P,. (4.7) 

16-2 
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Using (4.1), (4.3), (4.4) and (4.6) in (4.7), one obtains 

J , A .  1’. A ranha 

(tT -+c- A) (4 lA12) +,av IAI2 +pr IAI4 = t (  - @,A* + iQz A ) .  (4.8) 

Equation (4.8), obtained here by direct physical arguments, is just the energy 
identity of the nonlinear wave equation (3.11). This fact not only checks the 
consistency of (3.11), but it also provides a clear physical meaning for the damping 
factors {pv; p,}. 

I n  a two-dimensional wave tank, A does not depend on X .  If the wavemaker is 
switched off a t  T = 0, then QL = 0 for T > 0 and the energy equation (4.8) reads 

(4.9a) 

where A ,  is the wave amplitude a t  T = 0. Since T = &t it follows from (4.9a) that 

d 
dT -PI2 = -2(~u, +Pr MI’) IAI2 2 -2(pu,+~u, lAo12) IAI2, 

(4.9b) 

This expression shows that the decay rate of the trapped mode is very small, a 
conclusion in accordance with the laboratory observations described in McIver & 
Evans (1985) and also the introduction of I. For a slender three-dimensional cylinder, 
(4.8) is a wave equation and the same conclusion does not apply. I n  this case the 
perturbation is swept away with the group velocity c(Q) when the ‘wavemaker’ is 
switched off. 

5. Normalization of the wave equation, and discussion 

approximation (3.15), 
As explained in $ 3  it is convenient, a t  least in a first analysis?, to use the 

&,(€:XI = IQLI eiYH(X), (5.1) 

where both I&,/ and Y are X-independent and H(X) is equal to 1 for 0 < X < l / y  
and zero otherwise. For p, = ,uv = 0 the solution A(X,T) of (3.11) is of order 
IAI3 - O(&,/n) when c = 0 and, in this way, the following normalized variables are 
introduced : 

1 ( 5 . 2 )  
x = (IQL12 Inl)kY, 5? = (I&,I’ Inl)@ cr = (IQL12 Inl)-$, 

pv = ( ~ ~ ~ 2 ~ n ~ ) - ~ p ~ ,  p ,  = lnl-lpr, A (X ,T )  = (in1 I&Ll-l)ae-”Y_4(X,T).j 

In  terms of (5.2) the wave equation (3.11) can be written as 

i - + --= + (a + ipV) A + (sgn (n) + ipr) IAI2K = H ( X ) ,  

where A ( X ,  T) must be subjected to boundary and initial conditions, for example 

(5.3a) (% :3 
_ _  _ 

_ _ _  
A(X,T) = 0 ;  X < 0 any T ,  A(X,0) = 0. (5.36) 

When @+ co the solution of (5.3) should approach the linear solution K(X,T)  = 

t It should be observed, however, that in a vicinity of order z - O(l)(X - O(&) from the ends 
z = 0;  z = L ( X  = 0 ;  X = l /y) the actual behaviour of Q J E X )  cannot be determined by this quasi- 
two-dimensional theory. This is a common feature of the standard slender body theories. 
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- Unstable branch 

sgn (n) = - 1 

FIGURE 1. The roots of equation ( 5 . 3 ~ ) .  

H ( X ) / 6  for T % 1 where, obviously, A(X,T) is then independent of X and T within 
the body (0 < X < l/y). It is known that solutions of some forced nonlinear wave 
equations do not approach a steady state when T +  CO, even when the forcing term 
is time-independent and localized in space. This particular behaviour, however, 
seems to be related to the existence of solitons,t and since the present wave equation 
does not have this class of solutions (it is non-dispersive) a steady state is expected 
in the limit T-t CO. If this is the case, the solution of ( 5 . 3 ~ )  should be analogous to 
the resonant response of a nonlinear oscillator, where the amplitude is a root of the 
algebraic equation 

(if + ipv) A+ (sgn (n) + ipr) IAI2K = 1. (5 .3c)  

In  particular, a jump-like phenomenon should be expected for (5.3a),  and, for future 
reference, the roots of ( 5 . 3 ~ )  have been plotted in figure 1 as a function of the 
normalized detuning 6. Anyway the wave amplitude will be of order 1 when 
@ - ( l ) ,  and of order l /@ 4 1 if 6 9 1. From (5 .2)  it follows that the normalized 
size of the near-resonant region can be gauged by the parameter 

A@ = (I&$ Inl);, (5 .4a)  

since the near-resonant region will be large (small) if A@ is large (small), for the same 
detuning r - O(1). The related wave-amplitude parameter is given by 

AA = (1nl-l lQLl)i, (5.46) 

since A - O ( A J )  whenever A - O(1). Notice that A@AA = the intensity of the 
excitation, and both parameters give a good idea of the importance that a possible 
trapped-mode excitation may have on the performance of a submerged structure. 

The two pontoons of a semisubmersible platform, for example, are typically 
rectangular cylinders with length % 100 m, beam B z 16 m, width fi % 8 m and 

t Even for the cubic Schrijdinger equation, a steady state is reached when sgn (n) = - 1, in which 
case a soliton-like solution does not exist. In this circumstance a jump-like phenomenon is also 
observed; see Aranha et al. (1982). 
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distant 8 = 12 m from the free surface. In this case 8 = i?/x c 0.16 and, with this 
motivation, a rectangular box with beam B = 2b = 1.0, width D and distant X from 
the free surface will be considered in the following. If S is relatively large the trapped 
mode can be approximated by (see (4.4) and figure 2 of I) 

where A, = (KG-K;): is then the root of equation (4.5) in I or, in simplified form, 

To obtain (5.6), Ao/Ko was assumed sma.11, as in fact it is if S is large, and the 
quadratic term has been ignored in (4.5) of 1. Using (5.5) in (1.3) the integrals 
I o ( Q ) ,  . . . ,l,(Q) can be computed, and from (3.14) and (A 17) (see Appendix) a closed- 
form expression for n(Q) and p,(Q) can be derived. If then powers of h,/K, are 
neglected compared with 1 ,  the following formulas are obtained : 

(5 .7a)  

It remains to determine &, and some further assumptions must be made to render 
the analysis feasible. First, the incident wave (namely, the Froude-Krilov 
approximation for diffraction potential) can be used in (2.10), since only the order of 
magnitude [&,I is needed to estimate AF and A A .  Second, it will be assumed here that 
the two incident waves are in the same direction, that  is a = a1 = a2. Using then 
expression (5.4) of 1, one obtains the tuning condition cosa = (1 + r ) - l  with r = 

wl/Q, w1 being the frequency of the longest incident wave. In  this way a closed-form 
expression can be also dcrived for and further simplified if A,/Ko is neglected 
compared to 1 .  The final formula is given by 

For the range K O  = r?, B of practical interest the function f ( K ,  b ; r )  is of order 1 .  For 
example, taking w;  = 0.25 (corresponding to pl = 16 s for 8 = 16 m), f ( K ,  b ;  Y) 
changes from 0.94 to 0.64 when K O  changes from 0.50 to 2.00. Assuming f ( K ,  b ;  r )  = 
1.0 in (5.76), the following simple expressions for A@ and A X  can be derived: 

Notice that (5.8), based on (5.5), (5.6), is essentially correct in the limits KO+(),  
K O  + co and 8 --f 00 ; see I for details. In  this context the abovc approximation allows 
onc to do some qualitative analysis of the likelihood of trapped-mode excitation. For 
example; if X is large, Ao/Ko will be very small for all frequencies (see (5.6)), and (5.8) 
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S I B  = 12/16; BIB = 0.5 BIB = 3/16; D / R  = 0.5 

KOB W K O  1/Au A A  V K , ,  l/Au A 2  

0.50 0.09 25.0 2.2 0.16 17.0 2.7 
1 .oo 0.14 8.3 1.2 0.43 3.9 1.7 
1.50 0.12 5.9 0.8 0.66 1.8 1.2 
2.00 0.09 5.0 0.4 0.82 1 . 1  0 .9  

TABLE 1. Values of h,/K,, c z l / A @  and AA from (5.6) and (5.8) for a rectangular submerged body 
with beam B, width D and distant S from the free surface. 

indicates that  a trapped-mode excitation will be unlikely. Or, in short, the likelihood 
of trapped mode excitation increases (the size A S  of the near-resonant region 
increases) when the body approaches the free surface (S + 0). Expressions (5.6) and 
(5.8) also show that the trapped-wave phenomenon is essentially restricted to the 
frequency range KO = ROB 2 O ( i ) .  In  fact, from (5.6) it follows that ho/Ko d KO, and 
from (5.8) A@ d 0.45K8, AA < 2.22K1i8. The amplitude parameter Axincreases when 
KO decreases, but since A@ d 0.45Kg the near-resonant region is very small when 
K O  < O(1) .  Or, in short, trapped-mode excitation is unlikely if K O  < O ( i ) .  A similar 
conclusion also holds true if KO > O(1) with KOe-2KoS < 1.  

If one recalls that @ z 1/A@ when cr - O ( i )  and takes the nonlinear oscillator 
equation ( 5 . 3 ~ )  for reference, three roots of this equation exist for @ z l / A @  3 1.9: 
one above (stable), another below (unstable) the line lk12 = 8, and a third one (stable) 
below the line IA12 = is. In this latter branch the root ( 5 . 3 ~ )  can be approximated by 
121 z l/@, leading to the following estimate: A N, ho/Ko, see (5.2) and (5.7b),  where 
&;A is the relative value of the trapped-wave amplitude compared to the incident 
wave. In  the upper (stable) branch the size of A is determined by XAA, but the 
theoretical limit [AIL = L$ = l/pv should seldom be reached in reality. The upper 
branch ( A f )  is stable with respect to an infinitesimal perturbation, and for large c 
it  gets very close to the unstable branch (IAl-) below the line IA12 = @. In fact, 
(1x1'- l~l-)/lAl+ - for @ large, and this relation indicates that the upper-branch 
solution must become unstable with respect to a finite (although small) perturbation 
long before the theoretical threshold value lAIL = dL = i/pv is reached. A 
jump from the upper to the lower stable branch should occur somewhere in the 
interval 4 5 @ = i / A @  5 10, depending on the intensity of the existing background 
noise. 

Table 1 displays some values of ho/Ko, @ = i / A @  and AA obtained from (5.6) and 
(5.8), for two different ratios of SIB. The first case (SIB = 12/16; D / B  = 0.5)  
corresponds to the pontoon of a typical semisubmersible platform, and the other one 
to the same geometry placed closer to the free surface. 

For cr - O(1) the normalized detuning @ z i / A s  is relatively large when S / B  = 

12/ 16, and the relative trapped-wave amplitude should be of order 6-i(ho/Ko), 
associated with a root in the lower stable branch of figure 1 .  In  this case trapped- 
mode excitation is not a very strong phenomenon, and i t  should be restricted to 
frequencies around the value K o B  = 1.0. For SIB  = 3/16 the trapped-mode 
excitation is much stronger and the related wave amplitude should be determined by 
AX when K o B  2 1.0. In this case also t,he maximum response is associated with 
frequencies around the value KO B = 1.0. In  reality the values presented in table 1 
tend to underestimate the actual importance of trapped-mode excitation when 
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SIB = 3/16. On the one hand the approximation (5.6) gets worse as SIB  decreases 
and tendst to be a lower bound for h,/K,; on the other hand, powers of h,/K, that  
have been neglected in ( 3 . 1 4 ~ )  tend to increase the valuc of n and so of A 3 ,  see 

In general trapped-mode excitation seems to be a relevant phenomenon for 
submerged bodies, but before the present theory is improved, i t  would be worthwhile 
to experimentally confirm the gross features described here. 

(5.4 a) .  

Appendix - variational approximation for f ,(O) = 1: B,,(y, 0) b,,(y) dy 
To compute 16(Q), the potential B,,(y, z ) ,  the solution of (3.6), must be determined. 

The purpose of this Appendix is to show that a variational method can be used in 
such a way that a relatively rough approximation for B,,(y, z )  provides a much better 
result for 16. The procedure is similar to the Rayleigh quotient in vibration problems, 
where a convenient choice of a trial function provides a good approximation for the 
eigenvalue. 

Details can be found in Aranha & Pesce (1988), who applied the same method to 
solve the linear diffraction and radiation problems and, to make more general the 
present analysis, the water depth will be assumed arbitrary in the following. Let then 
( f n ( z ) ;  n = 0 , 1 , 2 ,  . . .} be the orthonormal set given in (3.2) of I, but defined at  
frequency 252 instead of $2. I n  an analogous way one can determine the related 
wavenumbers {xo(X2) ; x,(252)) and so define the coefficients 

D, = ( Iq -  (2KT)2)+, D, = ( X i  + (2KT)2)k (A 1 )  

Notice that (A 1) reduces to (3.8) if the deep-water dispersion relation R,  = (2!2)2 
= 4K, is used. To make short the exposition the body will be assumed symmetric 

with relation to the x-axis and so only the region y > 0 need be considered ({B,,(y, 
x) ; b, , (y ) f  are even (odd) in y if T(y, z )  is even (odd)). If b is the maximum half-beam 
of the body let En( - ) be the linear functional 

En( Y )  = Y(b, z ) ~ , ( z )  dz. L 
The general solution of (3.6) for y >, b can be written as a sum of a particular solution 
Bi$)(y ,z)  and a homogeneous one. Imposing the constraint B!$(b,z) = 0 then, from 
(A 2)> it  follows that, for y b ,  

B, = Lo(&). J 
If A ,  is the fluid region y > b and Y(y, z )  is an arbitrary function, the identit,y below 
can be easily obtained from (3.6): 

[VBL!). V!P+ (2K,)2Bi$) u] urn - (2Q)21r Bi$'(y, 0) Y ( y ,  0) dy 

7 It cannot be proven that (5.6) is a lower bound since i t  is only an approximation for the  
quadratic eyuation (4.5) in I. The root of this latter equation is always a lower bound. 
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Writing B!j$’(y, z )  in the form 

placing (A 5a) into (A 4) and taking Y(y,z) = Y,(y)f,(z), with Y,(y) arbitrary and 
n = 0,1 ,2 ,  . . . , a second-order ordinary equation for A,(y) can be derived. Imposing 
the conditions A,(b) = 0, dA,/dy - C, A ,  when y+ 00, one obtains 

Since b,,(y) - O(e-’@) when y+ 00 (see (1 .1 )  and (3.3)) the following relations can be 
derived : 

A,(y) - B, eiDou, A,@) - B, ecDnu; n > 0, (A 6 )  

in the limit y+ 00. The particular solution is entirely defined in terms of the known 
function b,,(y) and it remains to determine B,,(y, z )  in the region A(y < b )  ; see also 
( A  3 ) .  In  order to do so it should be observed, from (A 3),  that 

The function B,,(y, z )  satisfies (3.6a-d) in the fluid region A(y < b )  and the boundary 
condition (A 7) on the line y = 6. If ( 3 . 6 ~ )  is multiplied by an arbitrary Y(y,z) and 
integrated by parts in A the following weak equation is obtained : 

G(B,, ; Y)  = iDo Bo Lo( Y)  + V,( ul), 

with 

It is not difficult to relate I, to the linear functional Vl( 4 ) .  In  fact, from (A 4) and a 
similar expression for B,,(y, z ) ,  one can easily derive the identity 

that leads to 

= JOm b22(y) BZ2(y, O) dy = [ v l ( B 2 Z ) + ~ ~  B$2’(y, O) bZZ(y) ‘y]. (A lo) 

Since {b,,(y); B!$(y, z ) }  are known, only Vl(Bz2)  must be determined and in order to 
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do so it is desirable to change slightly the weak equation (A 8). If functions with a 
suffix It are assumed to satisfy the essential condition Lo(YR) = 0 one can write 

(A 11)  i M y ,  2) = B d y ,  Z ) + B O f 0 ( 4 >  

Y(Y> z )  = YE(Y> 4 + ~ O ( Y ) j O ( Z ) >  

since Bo = Lo(HZ2); see (A 3). Placing (A 11) into (A 8) and defining {BR,~(y ,  z ) ; j  = 1 ,  
2 )  as the solutions of the weak equations 

the following expressions can be obtained 

From (A 12) and (A 13) it follows that 

V l ( B 2 2 )  = G(BR.,l; BR, l )+BOIVl ( f , )+G(BR, , ;  HR,2)1, (A 14) 
and so V,(B,,) can be determined once the coefficients Gij = G(BR,(;  BR,?) are 
computed. If R,,&, z ) ,  j = 1,2 ,  belong to the space of functions W,(A), let A i j ( .  ; .) be 
the functionals 

defined in the Cartesian product space WE@) x WR(A). It is an easy task to check 
now that Gij = A i j ( B K , i ;  B H , j )  and, furthermore, that  A i j ( .  ;.) is stationary at (BR,(;  
&)E W,(A) x W,(A). Then an error of order O(CYB,,~) in implies an error of 
0(6B,,< CYB,,~) < 0(6B,,( ; SB,,,) in Gij. Or, in short, a relatively rough approximation 
for B,,(y, z )  implies a much better approximation for J 6 .  Results shown in Aranha & 
Pesce (1988) confirm this feature of the present variational method. 

The trapped-mode approximation (5.5) is asymptotically correct in the limit 
S+ a. where S is the submergence depth. Placing (5.5) into (3.3) one can check that 
b,,(y) = 0 for y > 6 and so B!$(y,z)  = 0. If S is relatively large it is not difficult to 
obtain an expression for the proper trial function T,(y, z ) .  Indeed, when S+ 00 the 
solutions of (A 12) are, respectively, 

BR, I(Y, 2) = 0 (since b,,(y) + O )  

and C O S D , ~ B ~ , , ( ~ , Z )  = (COS D,Y-COS D b b ) A ( z ) .  

In  this way the choice 

T,(y, X )  = (COS Do ZJ - cos0 Do b ) h ( z )  

seems to be a convenient one for a relatively large S and then the coefficients Gij can 
be determined from the simple expressions 

G ( B R , i  ; B R , j )  = q(&) F(rR)/G(TR; &) ; 

see (A 15). For a rectangular box in deep water with beam 26 = 1 ,  width D and 



h':2Cilation of %ua~~'cs t r a p p d  by subnwrged .dPnder structurPs 453 

distant S from the free surface the following formulas can be obtained for the 
relevant parameters . 

J = e-HKoS( 1 - e~8KoU ) ;  K,) = sz'. 

[sin I j o b - D o h  c o ~ D , b ] .  V,(rR) = -32/8hff 

From (A lo), (A i3) ,  (A 14) it is not difficult to  check that  I ,  remains hounded even 
when G(&; rR) + 0. This result is closely related to  the cxistcncc and uniqueness 
theorem for the linear diffraction problem. Obviously the approximation for I ,  can 
be improved but  the present one, given by (A 16), seems consistent with the related 
approximation for the trapped mode. If X is relatively large the parameter J can be 
disregarded compared to  1, and the simple expression below can be derived : 

with 

1 - cos Do b - 4D06 sin2 Do 6 + (Do 6)2  sin 
(2D0 b cos Do h - sin D,, 6)' + cos' D,, b 

a, = (i- 
i+2h00 

I sin2 Do 6 
a2 = 

1 + 2h0 b (2D06 cos Do 6 - sin Do 6)'+ cos2 Do 6 '  

(A 17a) 

(A 176) 
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